
The CORE object is an instance of the CORE16F_System_Interface_t structure, which provides a
collection of core functionalities available in the CORE8-16F framework. Below is a brief overview of
the key functions and features available through CORE.

CORE Definition

Key Functionalities of CORE

CORE API Documentation -
Core8-16F

const CORE16F_System_Interface_t CORE = {
 .Initialize = &CORE16F_init,

 #ifdef _CORE16F_SYSTEM_INCLUDE_DELAYS_ENABLE
 .Delay_MS = &CORE16F_Delay_BlockingMS,
 #endif /_CORE16F_SYSTEM_INCLUDE_DELAYS_ENABLE/

 #ifdef _CORE16F_SYSTEM_EVENTS_ENABLE
 .Events_Initialize = &TimedEventSystem_Init,
 .Events_Add = &ScheduleEvent,
 .Events_Check = &CheckEvents,
 .Events_Remove = &CancelEvent,
 #endif

 .Make16 = &CORE_Make_16,
 .Low4 = &CORE_Return_4bit_Low,
 .High4 = &CORE_Return_4bit_High,
 .Set_Bit = &CORE_Set_Bit,
 .Clear_Bit = &CORE_Clear_Bit,
 .FloatToString = &CORE_floatToString,
 .IntToString = &CORE_intToString,
};

Initialization: CORE.Initialize() initializes the core system, including clock and peripheral
setup.
Delays (Conditional): If enabled, CORE.Delay_MS(timeMS) provides a blocking delay in
milliseconds.
Event Management (Conditional): If enabled, CORE offers several event management
functions:

CORE.Events_Initialize(): Initializes the event management system, allowing
events to be scheduled and handled.
CORE.Events_Add(delay_ms, callback, interval): Schedules an event to occur
after a specified delay in milliseconds. The callback function will be called when the
event occurs, and interval specifies if the event should repeat (0 for a one-time
event).
CORE.Events_Check(): Checks for any pending events and executes their
associated callbacks if the conditions are met.
CORE.Events_Remove(callback): Cancels a previously scheduled event by
providing the callback function associated with it. This is useful for stopping
recurring events or removing unwanted scheduled events.

Utility Functions: Various helper functions are provided:
CORE.Make16(high_byte, low_byte): Combines two 8-bit values into a 16-bit value.
CORE.Low4(byte), CORE.High4(byte): Extracts lower or higher 4 bits from an 8-bit
value.
CORE.Set_Bit(byte, bit_position), CORE.Clear_Bit(byte, bit_position): Sets or clears a
specific bit in an 8-bit value.
CORE.FloatToString(number, buffer, decimalPlaces): Converts a float to a string
representation.
CORE.IntToString(number, buffer): Converts an integer to a string representation.

The CORE object provides a convenient and centralized interface for accessing key functions of the
CORE8-16F system, making it easier for developers to initialize, control, and manage the
microcontroller's features effectively.

Revision #2
Created 21 November 2024 21:31:54 by Jamie
Updated 25 November 2024 15:43:31 by Jamie

