
Core MCU Framework Documentation

Core MCU Framework Overview

What is Core MCU Framework?
License
Versions
Releases
Core MCU Framework – Download

Getting Started

Directory Layout CORE8-16F Version

CORE Interface

CORE API Documentation - Core8-16F

HAL Interface
Drivers

Core MCU
Framework
Documentation

Core MCU Framework
Overview

Core MCU Framework Overview

The Core MCU Framework is a specialized software platform designed for developing
applications that run on microcontroller units (MCUs).

The goal of Core MCU Framework is to make it easy to move between various MCU
processor platforms.

One of the primary challenges in embedded systems development is dealing with the
heterogeneity of hardware. Different MCUs have their own sets of instructions,
peripherals, and memory architectures. Core MCU Framework aims to abstract these
differences so that developers can write code that is portable across various MCU
processors. This means you can take a program designed for one MCU and adapt it to
another with minimal changes.

Core MCU Framework provides a collection of libraries and tools that simplify common
tasks in embedded systems programming.

For example, Core MCU Framework offer standardized libraries for handling I/O
operations, timers, interrupts, and other peripherals common to MCUs. This can
significantly speed up the development process and reduce the learning curve when
moving between different MCUs.

A uniform application programming interface (API) across various MCUs allows
developers to apply the same code structure and calls, regardless of the underlying
hardware. Core MCU Framework’s consistent API ensures that developers don’t need to
relearn command sets or libraries when switching MCUs, thus saving time and reducing
errors.

What is Core MCU
Framework?

Portability Across Different MCUs

Simplified Development Process

Consistent API

Core MCU Framework Overview

Core MCU Framework is free for non-commerical use.

This means, if you are a hobbyist or just want to play around with Core MCU Framework,
you may do so.

However, if you are selling a product, making money from something using it – we need
to talk. I think it is only fair to get a cut, so I can support my hobbies and create more
cool stuff. Don’t you think so?

Core MCU Framework Software License Agreement

1. Definitions

“Framework” refers to the Core MCU Framework, which is a specialized software
platform designed for developing applications that run on microcontroller units (MCUs).
“Licensee” refers to any individual or entity that uses the Framework.
“Commercial Use” involves any use of the Framework in a commercial activity where
the primary intention is revenue generation.

2. Grant of License

Non-Commercial License: The Framework is available free of charge for non-
commercial use by hobbyists, students, and developers for educational or personal
projects. This license allows you to use, modify, and distribute the Framework in non-
commercial settings.
Commercial Use License: Use of the Framework in any commercial activity requires a
separate license agreement. Interested parties should contact the Licensor to negotiate
terms suitable for commercial distribution and support.

3. Portability and API Consistency

The Framework is designed to abstract the differences across various MCUs, providing a
consistent API that enhances portability and simplifies the development process. This
includes standardized libraries for I/O operations, timers, interrupts, and other peripherals.

4. Restrictions

You may not use the Framework for any commercial purposes without a separate
licensing agreement.
You shall not misrepresent the origin or ownership of the Framework.

License

Modifying or extending the Framework for commercial use without the proper commercial
license is strictly prohibited.

5. Rights of the Licensor

The Licensor reserves the right to update the terms of this license and the Framework
itself at any time. Notifications of such updates will be provided to all active users.

6. Limitation of Liability

The Framework is provided “as is”, without warranty of any kind, express or implied. The
Licensor shall not be liable for any claims or damages whatsoever resulting from the use
of the Framework, including direct, indirect, incidental, or consequential damages.

7. Termination

This License is effective until terminated. The License will terminate immediately without
notice from the Licensor if you fail to comply with any provision of this License. Upon
termination, you must cease all use of the Framework and destroy all copies, full or
partial, of the Framework.

8. Miscellaneous

This License constitutes the entire agreement between the parties relating to the use of
the Framework and supersedes all prior or contemporaneous understandings regarding
such subject matter. No amendment to or modification of this License will be binding
unless in writing and signed by the Licensor.

Core MCU Framework Overview

Core MCU Framework – Version is based on the specific MCU device you’re working with.

Core8-16F – Designed for PIC16 Series Devices – Compatible with:

PIC16F15313
PIC16F15323
PIC16F15324
PIC16F15325

Core8-18F – Designed for PIC18 Series Devices – Compatible with:

PIC18F2xQ84

Versions

Core MCU Framework Overview

Date Version Notes

2024/09/09 1.0.0 Initial Version

2024/09/24 1.0.1 Added HAL Interfaces

Date Version Notes

2024/10/11 1.0.0 Initial Version - Beta

Releases
Core8-16F Releases

Core8-18F Releases

Core MCU Framework Overview

The Core MCU Framework Versions, along with drivers can be found in my Github Repo.

Core MCU Framework Download – Link

Core MCU Framework –
Download

https://github.com/JamieStarling/Core_MCU_Frameworks

Getting Started

Getting Started

This documentation provides an overview of the directory structure of the CORE8-16F
microcontroller framework. The purpose of this guide is to help developers quickly understand the
framework's layout, where to find specific components, and the function of each directory and file.

main.c : The main entry point of the program. This file contains the initial setup and
execution flow for the framework.

core16F.h : The primary header file for the CORE8-16F framework, providing core
definitions and function prototypes.
core16F_const.h : Defines constants used throughout the core framework, ensuring
consistent values are used across different modules.
core16F_init.c : Initialization routines for the CORE8-16F, setting up essential
configurations before main program execution.
core_version.h : Tracks the version of the core framework, providing version information
that can be used for compatibility checks.

Directory Layout CORE8-16F
Version
Directory Structure Documentation
for CORE8-16F Version

Overview

Top-Level Directory (src/)

Core Framework Directory (core16F/)

Core System Subdirectory (core16F_system/
)

delays/ : Provides delay routines with delays.c and delays.h for timing control in the
program.
events/ : Manages system events, with events.c and events.h handling event triggering
and processing.
timer/ : Includes files (isr_core16F_system_timer.c , .h) for handling system timer interrupts,
crucial for timing operations and event scheduling.
utils/ : Utility functions (utils.c , utils.h) that provide common operations used throughout
the core, like math functions or data conversions.

The core interface provides essential functions and definitions that are crucial for developers to
interact with the CORE8-16F framework effectively. Below are the key files and their purposes:

core16F.h : This is the primary interface header for the core framework, containing:
Function prototypes for initializing and managing core functionalities.
Core definitions and macros that simplify development and ensure consistent use of
common patterns.
Inline documentation for each function, explaining its purpose, parameters, and
return values.

core16F_const.h : This file defines all the constants used within the core system:
Constants such as clock frequency, system status codes, and other fixed values that
maintain uniformity throughout the framework.
It ensures that all core modules use the same references, reducing discrepancies
and simplifying debugging.

core16F_init.c : Contains functions used for initializing the core framework:
void core_init(void) : This function sets up the initial configurations, including clock
settings and system timers.
Initialization Routines: Initializes critical subsystems such as GPIO, timers, and
interrupts. Each of these routines is modular, allowing developers to include or
exclude components based on their project requirements.

core_version.h : Used for tracking the version of the core:
Contains macros that specify the version number of the framework.
Useful for ensuring compatibility when integrating different versions of the core with
other modules or projects.

Device Configuration Files: Contains configuration files specific to different PIC
microcontrollers, such as 16F15313_configBits.h and 16F1532x_configBits.h , which provide
settings for configuration bits like clock sources and watchdog timers.
Device-Specific Headers: Files like 16F15313_core16F_config.h and
16F1532x_core16F_config.h contain setup information that is specific to each microcontroller
model.

Core Interface Documentation

Device Configuration (device/)

ds18b20/ : Contains ds18b20.c and ds18b20.h files for interfacing with the DS18B20
temperature sensor.
lcd_i2c/ : Provides the driver for I2C-connected LCD displays, including source (lcd_i2c.c)
and header (lcd_i2c.h) files.
led_rgb/ : Handles RGB LED control with led_rgb.c and led_rgb.h , providing functions to
adjust colors and brightness.

gpio/ : Manages GPIO pins with gpio.c , gpio.h , as well as analog-specific functionality (
gpio_analog.c , gpio_analog.h). Provides functions for configuring and manipulating digital
and analog pins.
i2c1/ : I2C protocol support (i2c1.c , i2c1.h), allowing communication with devices on the
I2C bus.
nco1/ : Provides functionality to handle Numerically Controlled Oscillators (NCO) with
nco1.c and nco1.h .
one_wire/ : Implements the One-Wire communication protocol with one_wire.c and
one_wire.h , typically used for sensors like DS18B20.
pps/ : Manages the Peripheral Pin Select (PPS) feature (pps.c , pps.h) which allows flexible
I/O mapping.
pwm3/ , pwm4/ , pwm5/ , pwm6/ : PWM modules (pwmX.c , pwmX.h) providing functions
to control Pulse Width Modulation outputs for different channels.
serial1/ : UART communication support (serial1.c , serial1.h , serial1_isr.c), handling serial
communication including interrupt-based transmission and reception.
Timers (tmr0/ , tmr1/ , tmr2/): Provides timer support (tmrX.c , tmrX.h) for controlling
time-based events and functions.

isr_control.c , isr_control.h : Manages interrupt control, providing a central place for
handling various hardware interrupts.
main_isr.c : The main interrupt service routine, coordinating different interrupts such as
timers, serial communication, and more.

The structure of the CORE8-16F framework is designed to provide modular and reusable
components, allowing developers to easily add, modify, or remove features as needed. By
understanding the purpose of each directory and its contents, developers can efficiently navigate
the codebase and make effective contributions or adaptations to their specific needs.

Driver Directory (drivers/)

Hardware Abstraction Layer (hal/)

Interrupt Service Routines (isr/)

Purpose and Use

CORE Interface

CORE Interface

The CORE object is an instance of the CORE16F_System_Interface_t structure, which provides a
collection of core functionalities available in the CORE8-16F framework. Below is a brief overview of
the key functions and features available through CORE.

CORE Definition

Key Functionalities of CORE

CORE API Documentation -
Core8-16F

const CORE16F_System_Interface_t CORE = {
 .Initialize = &CORE16F_init,

 #ifdef _CORE16F_SYSTEM_INCLUDE_DELAYS_ENABLE
 .Delay_MS = &CORE16F_Delay_BlockingMS,
 #endif /_CORE16F_SYSTEM_INCLUDE_DELAYS_ENABLE/

 #ifdef _CORE16F_SYSTEM_EVENTS_ENABLE
 .Events_Initialize = &TimedEventSystem_Init,
 .Events_Add = &ScheduleEvent,
 .Events_Check = &CheckEvents,
 .Events_Remove = &CancelEvent,
 #endif

 .Make16 = &CORE_Make_16,
 .Low4 = &CORE_Return_4bit_Low,
 .High4 = &CORE_Return_4bit_High,
 .Set_Bit = &CORE_Set_Bit,
 .Clear_Bit = &CORE_Clear_Bit,
 .FloatToString = &CORE_floatToString,
 .IntToString = &CORE_intToString,
};

Initialization: CORE.Initialize() initializes the core system, including clock and peripheral
setup.
Delays (Conditional): If enabled, CORE.Delay_MS(timeMS) provides a blocking delay in
milliseconds.
Event Management (Conditional): If enabled, CORE offers several event management
functions:

CORE.Events_Initialize(): Initializes the event management system, allowing
events to be scheduled and handled.
CORE.Events_Add(delay_ms, callback, interval): Schedules an event to occur
after a specified delay in milliseconds. The callback function will be called when the
event occurs, and interval specifies if the event should repeat (0 for a one-time
event).
CORE.Events_Check(): Checks for any pending events and executes their
associated callbacks if the conditions are met.
CORE.Events_Remove(callback): Cancels a previously scheduled event by
providing the callback function associated with it. This is useful for stopping
recurring events or removing unwanted scheduled events.

Utility Functions: Various helper functions are provided:
CORE.Make16(high_byte, low_byte): Combines two 8-bit values into a 16-bit value.
CORE.Low4(byte), CORE.High4(byte): Extracts lower or higher 4 bits from an 8-bit
value.
CORE.Set_Bit(byte, bit_position), CORE.Clear_Bit(byte, bit_position): Sets or clears a
specific bit in an 8-bit value.
CORE.FloatToString(number, buffer, decimalPlaces): Converts a float to a string
representation.
CORE.IntToString(number, buffer): Converts an integer to a string representation.

The CORE object provides a convenient and centralized interface for accessing key functions of the
CORE8-16F system, making it easier for developers to initialize, control, and manage the
microcontroller's features effectively.

HAL Interface

Drivers

