
Directory Layout CORE8-16F Version

Getting Started

This documentation provides an overview of the directory structure of the CORE8-16F
microcontroller framework. The purpose of this guide is to help developers quickly understand the
framework's layout, where to find specific components, and the function of each directory and file.

main.c : The main entry point of the program. This file contains the initial setup and
execution flow for the framework.

core16F.h : The primary header file for the CORE8-16F framework, providing core
definitions and function prototypes.
core16F_const.h : Defines constants used throughout the core framework, ensuring
consistent values are used across different modules.
core16F_init.c : Initialization routines for the CORE8-16F, setting up essential
configurations before main program execution.
core_version.h : Tracks the version of the core framework, providing version information
that can be used for compatibility checks.

Directory Layout CORE8-16F
Version
Directory Structure Documentation
for CORE8-16F Version

Overview

Top-Level Directory (src/)

Core Framework Directory (core16F/)

Core System Subdirectory (core16F_system/
)

delays/ : Provides delay routines with delays.c and delays.h for timing control in the
program.
events/ : Manages system events, with events.c and events.h handling event triggering
and processing.
timer/ : Includes files (isr_core16F_system_timer.c , .h) for handling system timer interrupts,
crucial for timing operations and event scheduling.
utils/ : Utility functions (utils.c , utils.h) that provide common operations used throughout
the core, like math functions or data conversions.

The core interface provides essential functions and definitions that are crucial for developers to
interact with the CORE8-16F framework effectively. Below are the key files and their purposes:

core16F.h : This is the primary interface header for the core framework, containing:
Function prototypes for initializing and managing core functionalities.
Core definitions and macros that simplify development and ensure consistent use of
common patterns.
Inline documentation for each function, explaining its purpose, parameters, and
return values.

core16F_const.h : This file defines all the constants used within the core system:
Constants such as clock frequency, system status codes, and other fixed values that
maintain uniformity throughout the framework.
It ensures that all core modules use the same references, reducing discrepancies
and simplifying debugging.

core16F_init.c : Contains functions used for initializing the core framework:
void core_init(void) : This function sets up the initial configurations, including clock
settings and system timers.
Initialization Routines: Initializes critical subsystems such as GPIO, timers, and
interrupts. Each of these routines is modular, allowing developers to include or
exclude components based on their project requirements.

core_version.h : Used for tracking the version of the core:
Contains macros that specify the version number of the framework.
Useful for ensuring compatibility when integrating different versions of the core with
other modules or projects.

Device Configuration Files: Contains configuration files specific to different PIC
microcontrollers, such as 16F15313_configBits.h and 16F1532x_configBits.h , which provide
settings for configuration bits like clock sources and watchdog timers.
Device-Specific Headers: Files like 16F15313_core16F_config.h and
16F1532x_core16F_config.h contain setup information that is specific to each microcontroller

Core Interface Documentation

Device Configuration (device/)

model.

ds18b20/ : Contains ds18b20.c and ds18b20.h files for interfacing with the DS18B20
temperature sensor.
lcd_i2c/ : Provides the driver for I2C-connected LCD displays, including source (lcd_i2c.c)
and header (lcd_i2c.h) files.
led_rgb/ : Handles RGB LED control with led_rgb.c and led_rgb.h , providing functions to
adjust colors and brightness.

gpio/ : Manages GPIO pins with gpio.c , gpio.h , as well as analog-specific functionality (
gpio_analog.c , gpio_analog.h). Provides functions for configuring and manipulating digital
and analog pins.
i2c1/ : I2C protocol support (i2c1.c , i2c1.h), allowing communication with devices on the
I2C bus.
nco1/ : Provides functionality to handle Numerically Controlled Oscillators (NCO) with
nco1.c and nco1.h .
one_wire/ : Implements the One-Wire communication protocol with one_wire.c and
one_wire.h , typically used for sensors like DS18B20.
pps/ : Manages the Peripheral Pin Select (PPS) feature (pps.c , pps.h) which allows flexible
I/O mapping.
pwm3/ , pwm4/ , pwm5/ , pwm6/ : PWM modules (pwmX.c , pwmX.h) providing functions
to control Pulse Width Modulation outputs for different channels.
serial1/ : UART communication support (serial1.c , serial1.h , serial1_isr.c), handling serial
communication including interrupt-based transmission and reception.
Timers (tmr0/ , tmr1/ , tmr2/): Provides timer support (tmrX.c , tmrX.h) for controlling
time-based events and functions.

isr_control.c , isr_control.h : Manages interrupt control, providing a central place for
handling various hardware interrupts.
main_isr.c : The main interrupt service routine, coordinating different interrupts such as
timers, serial communication, and more.

Driver Directory (drivers/)

Hardware Abstraction Layer (hal/)

Interrupt Service Routines (isr/)

Purpose and Use

The structure of the CORE8-16F framework is designed to provide modular and reusable
components, allowing developers to easily add, modify, or remove features as needed. By
understanding the purpose of each directory and its contents, developers can efficiently navigate
the codebase and make effective contributions or adaptations to their specific needs.

